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ON THE NASH POINT EQUILIBRIA IN THE CALCULUS OF VARIATIONS

Kung-Ching Chang*

11. Introduction

The problems of the existence and the regularity of the local minima are

of fundamental importance in the theory of the calculus of variations.

Although there has been a long history, several remarkable contributions

appeared in recent years. Among them, I would like to mention two results in

these directions.

(1) The existence of a local minimum of the variational integral

J(u) = f f(x,u(x),Vu(x))dx for u c W 'r (,RN)

nI

where n C it is a bounded open set, I < r < c, and N is an integer. The

function f is assumed satisfying

I. f : X J4(1+n) + R1, is a Caratheodory function, with the growth

condition

If(x,p,P)l 4 a(x) + C(Ipl + IPh)r ,

where a is nonnegative, and is in LI(M), and C ) 0 is a constant.

II. (Coerciveness) a constants cl, K > 0 such that

c Iplr - K 4 f(x,p,P).

Under these conditions, a minimizing sequence exists, and possesses a

weakly convergent subsequence. If we know that J is sequentially weakly

lower semicontinuous (swisc in short), then the local minimum exists. The

following result due to Acerbi and Fusco [1] gives an answer to the swisc.

Also Department of Mathematics, University of Wisconsin-Madison, Madison, WI

53706, and Peking University, People's Republic of China.

Supported by the U. S. Army Research Office under Contract No. DAAL03-87-K-
0043.
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Theorem 0.1 (Acerbi, Fusco). If f is a nonnegative function satisfying

(I) and

III. (Quasiconvexity in the Morrey sense) For a.e. x c , Vp c

VO C Q, bounded open subset, Vw c C(O,RN)

CC f(x,P,P)mes(0) 4 f f(x,p,P + Vw(y))dy -P E RN .

0

Then J is swtsc.

(Actually, (III) is also a necessary condition for swisc.)

Therefore J possesses a local miniimum, if (I), (II) and (III) hold.

(2) Regularity. The following results were obtained by Giaquinta and

Giusti [4].

Theorem 0.2. If f satisfies (I) and (II), and if u0  is a local

minimum of J, then u0 c Wi(ol,i) for some s > r.

Theorem 0.3. Assume that {A'(x,p), i,j = 1,...,n, h,k - 1,...,N} are

bounded continuous functions in Q x RN, with Ao = A, satisfying

A jx.P)Ei~jnhnk > XIE12InI2  VEr) E Rp x X. X > 0

and

{I 2 _ K 4 f(xpp) :_ Ai (xhp)php 4 Cj 2 + K

VP - £ } nN, for some constants C, K > 0. Let u C W QR) be a

local minimum of J, then 3 an open set SI0 C a such that u c C0'a(S0,RN)

for every a < I. Moreover, the Hausdorff measure Hn-q(n\Q0 ) = 0 for some

q > 2.

The purpose of this paper is to extend all these results to Nash point

equilibria for variational integrals.

Let EI,E 2 ,...,Em be m sets, and let f1,f2,...,fm : El x E2 *.. x Em
m

+ R1 be m functions. A point x (x ,x2,...,Xm) C fl Ei is called a
i-I

Nash point equilibrium, if
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f(Xl,'X2,...,x m ) > fl(YlX2, ....,xm) I

f2(XX2,...,xm) > f2(X1,Y2,...,xm) I

fm(Xlx2I .. Xm) > fm(X1IX2'".1Ym)

I m

V(YlY2, ...-,Ym )  11] Ei "
i=I1

The concept of Nash point equilibria is a natural extension of the local

minima (m = 1, f = -fl), and of the saddle points (m = 2, fl = -f, f 2 
= f)"

In order to simplify the notations, we only consider m = 2.

In the following, we assume both the functions FG : g x R(N +M ) (1+n)

+ R1 satisfying

(1) They are Caratheodory functions, with the growth conditions:

IF(x,p,q,P,Q)I, IG(x,p,q,P,Q)I 4 a(x) + C(IpI + lql + ;pI + iQI)r

V(x,p,q,P,Q) n x le x IeN x × M, for 1 < r < ®.

And we define

J(u,v) = - f F(x,u(x),v(x),Vu(x),Vv(x))dx

K(uv) = - f G(x,u(x),v(x),Vu(x),Vv(x))dx

for (u,v) c WIr(n2,RN+M). We introduce a new function H : Q x R2(N+M)(1+n)

as follows

H(x,p,q,P,Q; p,q,P,Q) F(xp,q,P,Q) + G(xp,q,P,Q)

-- F(x,p,q,,Q) - G(x,p,q,P,6)

Some assumptions similar to those for local minima are made:

(II) (Coerciveness) a constants C1 1C2,C3 > 0 and some 0 < r < r,

such that

H(x,p,q,P,Qg ii, Q) ), C1 (jpj + 1QI)r _ c3d1p1 + l~l)r _

C2 (I + Ijp + jqj + 11 + I 1)

-3-



(III) (Quasi-convexity in the Morrey sense) For a.e. x c Q, and V

(q,,, C R(2+n)(N+M), the function (P,Q) - H(x,p,q,P,Q; jq,P,Q)

is quasi-convex in the Morrey sense.

The main results in this paper read as follows.

Theorem I. In addition to assumptions (1), (II) and (III), we assume

(IV) The functions

(p,P) F(x,p,q,P,Q) V(x,q,Q) c x R" ~n )M ,

(q,Q) - G(x,p,q,P,Q) V(x,p,P) c x R(l+n )N

are convex.

The functional pair (J,K) possesses a Nash point equilibrium

(u0 ,v0 ) E W1,r(Q,RN+M).

Theorem II. Under the assumptions (I) and (II), if (u0,v0 ) is a Nash

point equilibrium of (J,K), then (uo,vo) e W1os(a,R+M) for some s > r.

The partial regularity result is also extended. We restrict ourselves to

perturbed quadratic functionals. Let

F = Ai (x,p,q)PhPk + B'i(x,p,q)PiQl + C'!(x,p,q)QijfQ + f(x,pq,P,Q) ,

G - aP(xpq)PP + b'(xpq)PiQ1 + c'm(xpq)QiQ + g(x,p,q,P,Q) ,

where i, j C, a , ,c (i,j = 1,...,n, h,k = 1,...

tn = 1,...,M), are bounded and uniformly continuous functions in

x RN +M , and f, g are Caratheodory functions.

We assume

(a) h ai = a, Cij = ji C ij = ci(a U= = hCm Cml, C m X
h Kh hK i i mL nML

(b) a is independent of q, and C is independent of p.

(c) X X > 0 such that

h'l(xp q phph > A p 2
p V(PQ) y 3n(N+

M )

-4-
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and 3 A' < 2A such that

1B ij(x,p,q)! l i, bh(x,p,q)! A', Vi'j,h,£
L L

(d) a 0 r < 2, 2 < r + s < 2 + -s such thatn

IfjIgj < C4[(IPI + Jql) 2 n/ n - 2 + (Ipl + jqj)5(jPj + IQI )r ]

Theorem III. Under the above assumptions (a)-(d), let

(Uv) C W1( 2,RN+M) be a Nash point equilibrium of the pair (J,K). Then

a an open set Q0 C Q such that (u,v) c COG'(a 0,R+M) for every a < t.

Moreover, Hn-q(Q\Q0) = 0 for some q > 2.

The same problems have been studied by Bensoussan and Frehse [2]. In

their work, the differentiability of the functions F and G with respect

to (p,q,P,Q), as well as the growth conditions in these derivatives are

assumed. However, these kinds of assumptions are not natural in the theory of

calculus of variations.

The main difference from theirs, is an assumption of the quasiconvexity

of the function H (Assumption III), which replaces an ellipticity condition

on (F,G) given in their paper. The advantage of this approach are twofold:

(1) Only weakly sequential convergence rather than the strong convergence is

used. It makes the argument clearer and more direct. (2) The functions F

and G are no more quadratic, we may apply our theorems to a large class of

functions.

A different approach, which improves [2] as well, is given by Zhang Ke-

Wei [7].

The proofs of Theorems I, II and III are given in §2. In the third

section, we present some examples, the first one, in some sense, is a

comparison with Bensoussan and Frehse [2]. The second one compares with a

study of saddle points due to the author [3]. And the third provides a new

example.

-5-



12. The proofs

Firstly, we modify the Ky Fan inequality to noncompact convex sets. It *1
is the abstract framework of the existence proof.

Lemma. Let X be a closed convex set of a separable Banach space E;

and let

:XxX RI

be a function satisfying the following conditions:

(1) Vy C X, x! P- (x,y) is swzsc,

(2) Vx c X, y! o 9(x,y) is quasiconcave, and is Zsc (in the strong

topology).

(3) 3 yo c X such that the function xl-- o(x,y0 ) is coercive,

i.e. q(x,yo) + +- as lxi + ._

(4) 9(x,x) 4 0 Vx C X.

Then there exists x0 c X such that

q(x 0 ,Y) < 0 Vy C X =

Proof 10. We consider a sequence of finite dimensional linear subspaces

of E:

LI C L 2 C *.. C Ln C

such that U L n E and Y0 c for some k.

On each Ln, n > k0 , we define

9n Xnxxn

where Xn = Ln r X. Then we have

(1) Vz C Xn, w- - 9n(WZ) is £sc.

(2) Vw c Xn, z! - Tn(wz) is quasiconcave.

(3) Tn(W,YO) + + as Owl L  +
n

(4) n(W,W) = 0 Vw C Xn.

• , '° ' ; .., . v~v . ." '- ' -6;.-- .' " - ' "-'"'""-¢"qo''.. ¢,€



According to Ky Fan Minimax inequality, we obtain wn - Xn  such that

(5) 9(wnz) 4 0 Vz C Xn -

20. Let us define

K :- {x c Xlq(x,y O ) < 0)

Provided by the assumptions (1) and (3), K is bounded and sequentially

closed, so it is sequentially weakly compact.

According to (5), one has {Wnlnok0 C K. This implies a subsequence

Wn ---% x 0 C K.

Again by the assumption (1), we have

9(xO,z) 4 0 Vz f U XU n
n-1

However, the function z! - 9(x0 ,z) is assumed lower semicontinuous and

since U Xn = X (in the strong topology)
n-

. . q(x0 ,y) 4 0 Vy C X .

The proof of Theorem I. Define a Banach space E = Wo1r( ,R"+M), and

denote (u,v) c E, where u C Wg'r(R,RN) and v C Wr RM) We define

a function X x X + R1 as follows:

= H(x,u(x),v(x),Vu(x),Vv(x); G(x),-(x),VE(x),Vr(x))dx

where = (u,v), n = (G,7) c X. The functional 9 is continuous (strongly)

in E x E, and that

VE c X, nI-- (,n) is concave

These follow from the assumptions I and IV respectively.

Provided by the assumption II,

p(Ee) =f H(x,u,v,Vu,Vv; 0,0,0,0)dx

n
> C1 f (l~ul + lVvl)r dx - C2 f (ul + 1v1 + 1) r d



as I&I =. And obviously we have

=

Therefore, in order to apply the lemma, we only want to verify the sw~sc

of the functionals: Vn = (u, ), F = (u,v) I--+ p(F,), i.e. V(5,f) c E, the

swisc of the functional

(u'v) -- f H(x,u,v,Vu,Vv; 5,'U,VU,V;U)dx•

Let

g(x,p,q) = C2 (1 + IpI + fqj + Ii(x)l + I(x) l + c3(Iv( r + Iv3(()lr)

and let

f(x,p,q,P,Q) = H(x,p,q,P,Q,U(x), (x),V(x),V(x)) + g(x,p,q)

The function f is quasiconvex in the Morrey sense with respect to (P,Q).

Thanks to the theorem due to Acerbi and Fusco, we have

lim f f(xuk(x),vk(x),Vuk(x),Vvk(x))dx
k+oo9

Sf flx,ulxl,vlx),Vulxl,Vv(x))dx

as Ek (ukvk) - (u,v) weakly in E. Provided by the Sobolev embedding

theorem together with the continuity of the Nemytcki operator, we obtain

lim f g(x,uk(x),vk(x))dx = f g(x,u(x),v(x))dx
* k+. Q

It follows

(kn) + 9( ,n) as Ek E in E

Therefore the lemma is applied, we have 0 = (u01v0 ) c E such that

O On)= f H(x,uo,vo,VuoVvo ,r,VC,V)dx 4 0

Vn = (i, ) € E. The last inequality is equivalent to



J(u0 ,v0 ) 0 J(Gv0),

E
K(u0 ,v0 ) ; K(u0 ,v)

The theorem is proved.

The proof of Theorem II. Since the Nash point equilibrium (u0 ,v0 ) E E

satisfies the inequality

f H(X,u0 (x),v 0 (x),Vu0 (x),Vv0 (x); u(x),v(x),Vu(x),Vv(x))dx 4 0nI
V(u,v) ,wg'r(.',RN+M). The coerciveness assumption II implies

C, f (IVuoir + lVvojr)dx 4 c2 f (ivuIr + IvvIr)dx
n

+ C3 f (1 + [uf + IvI + [u0j + IVOI)'dx

V(u,v) E wg'r(,O+M). According to the Poincard inequality, (u0 ,v0 ) turns

out to be a Q-minimum of the generalized Dirichlet integral

fI + V0u0lr + iVvOr)dx <Q f ( + lVujr + Ivvlr)dK

for suitable Q > 0. A result due to Giaquinta and Giusti [4,5] is applied,

see also Chang [3].

Remark. Theorems I and II can be generalized to the case where F and

G are inhomogeneous with respect to P and Q. Namely, say F, G are r-

power growth in P, and t-power growth in Q. Under suitably modified

assumptions I and II, these two theorems hold as well. The proof of Theorem I

is similar. As to Theorem II, we refer to Chang [3].

The proof of Theorem III. We use the following conventional notations

A,B,...,C stand for bilinear forms Ah(x,p,q),

B (x,p,q),...c'm(x,p,q) etc.
5%ht 2 m

A,B,..., stand for bilinear forms (xPq),

-- etc.

-9-
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A,B,...,c stand for bilinear forms A (x'p, ,

Bi(,~).. i~'')etc. *
AP - P = Ai(x,p,q)php ,..... etc.

hk i j '

Ux R f u(x)dx, vx = + v(x)
BR(x0  BR(x 0 )

where BR(XO) is the ball with radius R > 0 and center x0 , and f stands

for the mean value.

Let us denote w : R+ + R, the continuity modulus of the functions

A,B,...,c. It is increasing, concave, continuous and satisfies w(O) = 0,

w(t) 1 M, a const., and

JA(x,p,q) - A(x',p',,g')J, jB(x,p,q) - B(x',p',q')l ,.... c(x,p,q) - c(x',p',q')l

4 W(Ix - x'l 2 + lp - p'l 2 + Iq - q'l 2 ) •

Assume that (u,v) is a Nash point equilibrium of the function pair

(J,K). The proof is based on the following estimate

f (I + IVU1 2 + Vvil2 )
B (x0 )

S 2 + (IVut 2 + IVv[ 2))1-2/s
BCC
BR (x0

+ C 2(f(, IVuI12 + lVv 12)2/n-2 f( (1 + !Vu1 2 + Jvvl 2 )

BR (x 0 B B2R(x 0)

+ c 3 ( lux'0 Rl + iVx0,R I )2n/n-2 + c 4 Rn (1)

Vx 0 c n, V 0 < p < R < - dist(x0 ,aQ), where C,C 1,C2 ,C31 C 4 > 0 are
2

constants, and s > 2 is a suitable constant. Once it is established, the

conclusion follows directly from Giaquinta and Giusti, cf. Giaquinta E6, Thm.

1.1, Ch. VI].

-10-
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Let A,B,..., , denote the constant coefficient bilinear forms

'ux0.v. B'  (xO ux R°vxu. R)' ... c (xO,uxRVXR) etc-

Let (5,7) be the solutions of the following constant coefficient

elliptic boundary value problems

f ;Vii -V9 + I ;VT~ * VV = 0, VT C W1, 2(B~~0 ,N
B (x )

and

f *V - V* + _I bVu . V* = 0 V* C W1' 2 BR(x0),i)
BR(X0)

with 513BR(x) = UilBR(x ), VIBR(x) = VIaBR(X). And let (u0 ,v0 ) C

W6I2(BR(XS),RP +M ) be the solutions of the following equations

f ;*u 1 V9 -- 1. V v ;u-VAV 0 •Vq- VpVf "Vv 0 - V4-bVu- V =0
BR(xO) BR(x0 )

V9 C W1' 2 (BR(X),aN, V* C W 1 2 (BR(Xo),RM), we have

f V(a + uo ) • VT = 0, f 6V( + vo ) • Vi = o
BR(xO) BR(xO)

VI E W 1 2 (BR(X0),RN), , 2(B

Accc-ding to condition (c), the Caciappolli inequality and the LP

theory of elliptic systems imply that H constant C5 and C > 0 such that

for 0 < p < R,

f (IV(G + uo)12 + Iv(r + vo)12)
B P(x )

n

c 5(P) I (IV(i + u 0 )12 + Iv + vo)12)
B R(x0

and V 1 < p < m,

-11-
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f (Iv(z+ uo)IP + Iv(c + vo)IP)
BR(xo)

BR( X0 )-C C f (IV(u + uo)lp + IVv v+ vo)iP)

(Cf. (6, Ch VI, p. 206-210].)

These inequalities imply that

f (IV 12  + IVJ l2)
B (x 0 )

n
4 c( A) f (IVu1 2 + jVvi 2) + (1 + C) f (IVuot2 + IVvoI 2 ) (2)

B R(x 0 ) BR (x0

and

I (IVIP + 1v7Ip) 4 Cp f (IvufP + IvvIP) (3)B X ) R 0 )
BR (x0 B R(x)0

where C > 0 is an arbitrary positive number, and C. is a constant

depending on c.

Let w = u - u, z = v - ;. According to the Plancherel identity and

because (u,v) are the solutions of the above BVPs, we obtain

x f (1Vw1 2 + jvz1 2) ( f AVw & Vw + bVz • *

BR(x 0 ) BR(x0 )

f f V(u+ ) • V(u-U) + BVw • Vv + bVu • Vz + V(v+*)V(v- )

B R x 0)

- f (A-A)(Vu.Vu-Va.*V) + (g-B)V i Vv + (b-L)Vu • v; '

BR(x 0) "

+ (6-c)(Vv.Vv-V;.-V7)

+ f (i-A)Vu - Vu + (B-B)Vu Vv + (-b)Vu • Vv (c-c)Vv • Vv
B (x)
RO0(~x0) 

'

+ f AVU • Vu + (B+b)Vu * Vv + CVv 9 Vv

-12-
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f iv. v* +V u - Vv+bVuV 0 + . V

B R(x

oii + 12 + 13 + 14 . .(4)

Noticing

Ii + :2 4 C6 f w(R2 + 2[Iu - u(,R 12 + Iv - VxoR 12 +
BR(Xo)

+ lu _ U12  + Iv - ; 12])[lVu12 + IVV1 2  + lIE 2  + IV I2]

and that w is bounded, we have for some s > 2

1-2

f w • Ivu12  + IVvI2) c [f Ivul s + Ivv ]2/s[f
B R (x0 )  B R (x0 )  -I BR (x0 )

C8 f (1 + Ivul 2 + Ivul) 1- B

(x 2R Bx (x BRx0
B2 R(xo) BR(X)

by Theorem II. By the concavity of w, we have

w(R 2 + 2[u - U,s 2 + Iv - vxRI2 + iwI2 + IzI 2 ])

B R(x)0

Sw(R2 + 2 f (lu - uXoR12 + Iv - Vxo, 12) + 2 f (lwI2 + IzI2) )

B R(x 0) BR (x0)

w(R 2 + C9 R2-n f (1V1 2 + IVuI 2))
BR ( x0 )

The last inequality follows from the Poincard inequality and the inequality

(3). Similarly, we have

-13-
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2 2

f * " Ivi1 2  + Iv;l 2] < C CfIv I S + Ivvl 5)]5  [f ] s
B (x 0  B(x 0  B (x )

R0R 0 RD0W2 2

2IcC1f (tvul5 + lVvlS)]S[f W] S

BR (x BR(x)0

B2R(x0) BR(x 0 )

It follows

2

i1 + 12 < C13w(R2+C9R2-n f CIVu 2+lVvl 2 s)) I (+lVul 2+lVvl 2)
BR(x0) B2R(x0)

If we write the integrand of the summation 13 + 14 in the form

H(x,u,v,...,#Vr,7V7) + h(x,u,v,...,Vr,V7),

then

2n

lh(x,p,q,..., P,Q) C14E(pi + Iq I 1 + I+q) n- 2 +

+ (jpj + iqi * Ifl + lql)S(IPI + IQ! + Ili + 101)r]
2s

where 0 4 r < 2, 2 < r + s < 2 + - , provided by the assumption (d).n

However, (u,v) is a Nash point equilibrium, we have

f H(x,u,v,VuVv; u,4,Vu,Vv) • 0
B R(x0

(By extending (uV) = Cu,v) outside the ball BR(Xo).) It follows

2n

13 + 14 < C15 f [CIul + fvl + h1 + n

+ Clul + lvl + I*i + l1 lCslVul + IVvl + IVUJ + IvJl)r]

2n 2n

(C 16 (f Iul2+.Vv2)n-2 + C17 Rn (U xoRl+lvxoR 1)n-2 + C18Rn

-14-



cf. [3, Thin. 3]. In summary

f CVw'12*1Vz12) c14f (*l+vu1 2+jvv1 2)){wR 2 +

" C9 R2 -n f (iVu1 2+Vvl2)) s+ (f (IVu1 2+lv.,2)) n- 2 1
BR( x 0 ) ___ B

2n

" Rn(Iu I1v I)n- 2 + RP (5)
X0 ,R x 0 R

Using the relation

f (IVuI 2 + IVvI2) 4 (1 + E) f (Ivjl 2 + IV:, 2 )

B p(x ) Bp (xO)

CS f (IVw2 + IVzl 2) (6)
B p(x 0 )

and since (u0,v0 ) c W1,2(Br(xo),IR
+ m ) satisfying

f AVu0 V9 - BV9 * Vv = 0, f aVvo • V,- bvu v* = 0

BR(x0  
2 BR(x0 ) 2

One sees that from condition (d)

x f Ivu012 4 .' f IvI 2  and

A f Ivvo 2 < - A' f jVuJ 2  (7)
BR (x0  1 BR(x0)

Now we substitute (2) and (7) into (6), it follows

(Ivul 2 + Ivv12) ' c (P-) f (IVuI2 + 1vvl2)
B (x 0 ) B RIx)

+ ( + ) (x0 I) 1 + Iw 12 ) 
++ C (IVwl 2  + IVzl 2 ) •

B (x 0  BR(x 0

Choosing E > 0 sufficiently small, (1) is obtained by (5).

-- 5 - -



The rest of the proof is essentially the same as Theorem 1.1, in [6, Ch.

IV] and Theorems 1.1# 1.2 in [6, Ch. VI].

16
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§3. Examples

In this section, we shall present several examples to illustrate the

conditions stated in the theorems.

Example I. Suppose that .kh . . . . . . 3 m etc. are bounded

Caratheodory functions defined on R × +M .

Let

C , C(x,p,q) -C(x,,q),

a a(x,p,q) - a(x,p,q)

and let

Q - (A + a)P * P + (B + b)P • O + ( + c)Q • Q

where we use the abbreviation notations as in §2 Theorem II.

Assume that Q is positive definite in (P,Q)

V(x,p,q,p,q) C S x R2 (N+M), i.e. a X > 0 such that

Q )X(I 2 + IQ12 ) (3.1)

Suppose that f,g : g x R(1+n)(N+M) + R1 are Caratheodory functions

which are linear in (P,Q), and satisfy the growth condition
A

Iffjlg 'C (I + lpl r  + Iq r + IPI + IQ,), r < 2 . (3.2)

Then the functions

F(x,p,q,P,Q) =AP * P + BP * Q + CQ * Q + f(x,p,q,P,Q)

G(x,p,q,P,Q) =aP * P + bP * Q + cQ * Q + g(x,p,q,P,Q)

satisfy the assumptions I, II, III of Theorem I with r = 2.

We verify the assumption II

H - (A + a)P - P + (B + b)P * Q + (c + C)Q * Q

(AP * P + BP • Q + bP Q + Q Q)

where we use the abbreviation notations of §2 Theorem III. Thus

-17-
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A A AA

H ; X)lp12 + IQ1 2 )- M(1p12 + 112) - 2C(1 + IpJr + Iql + Ip1 r + I 1r)

I~ !Q)2  _ II _ -1 IPI2 _~ M 1 2 _ (1Q12  + 1p12) _ (IiI2 + 11

21)Q12) _ M(11 2 + 2 I2) _ C1 (JpJ + Jq2 + + + I2 1

As to assumption III, we observe that the function

(P,Q) I-- H(x,p,q,P,Q; , P,Q) Q(x,p,q,P,q; P,Q) + linear terms of (P,Q)

is convex. So that is quasiconvex in the Morrey sense.

Furthermore, we assume that the assumption IV hold, i.e. the function

(p,P) - F(x,p,...,Q) and (q,Q) - G(x,p...,Q) are convex.

Then Theorems I and II hold true for this pair (F,G).

Remark. This is just the example given by Bensoussan and Frehse in

[2]. Although the abstract assumptions of theirs are different from ours,

this example is a common model. An obvious advantage in this paper is that

neither the differentiable conditions nor the growth conditions of the

differentials of the functions F, G are needed.

Example 2. Suppose that F is a function satisfying the assumption I

and

Assumption II'. a constants r > r > 0 and C,C1,C2 > 0 such that

F(x,p,q,P,Q) ) Clplr - CIQ r - c2(Ipl + lqJ + 1)r

-F(x,p,q,P,Q) > CJQJr - CIP!r - C2(0pI + 1q) + 1)r

Assumption IV'. V(x,p,P) c Q x R(I+n)N, (q,Q) i- -F(x,p,q,P,Q), and V

(xqQ) C a x R(l+n)M, (p,P) I- F(x,p,q,P,Q) are convex functions.

Then the function pair (F,-F) satisfies the assumptions I-IV. In fact,

Assumptions I and IV are obviously true. And

H(x,p,q,P,Qi p -F(xP,q,P,Q) + F(x,p,q,P,Q)

> c(IJpr + JQJ r) - -C 2(IpI + JqJ + 1§1 + 141 +

it follows the assumption II. Since, now, the function H is convex in

U-'8



(P,Q) according to the assumption IV', it is quasiconvex in the Morrey sense

i.e. the assumption III holds.

The corresponding Nash point equilibrium (u0,v0 ) of the functional pair

(J,-J), where

J(uv) -f F(x,u,v,Vu,Vv)dx

*. is just the saddle point of J.

The existence Theorem I and partial regularity Theorems II, III imply the

corresponding results in Chang [3].

However, the above assumptions for the saddle point problem do not

satisfy the assumptions given in Bensoussan and Frehse [2], particularly, the

ellipticity condition. !l

We present here an example. Assume

f(t) = ItIr
r

where I < r < 2, and let

F(P,Q) = f(P) - f(Q)

Obviously, the assumptions I, II', IV' are all satisfied, but there is no I.

positive constant co > 0 such that

(F (P,Q) - F (P,Q))(P-P) - (FQ(P,Q) - (PIQQ) > c0(,P-P12 + Q_ 12 )

Example 3. We present here some high power functionals which have not

. been studied in (2]. Let n = M = N - 1,

F(P,Q) - A'P4 + AP
2 + BPQ + CQ

2

G(P,Q) aP2 + bPQ + cQ
2 + c'Q4

I
where A,B,...,c,A',c' are constants

H(P,Q,P,Q) A'p 4 + AP2 + (B + b)PQ + cQ2 + c'Q 4

A q4 - 2 - B -c62 -c4,

1 2,

Therefore, if A,A',c,c' > 0 and Ac > - (B + b) , all the assumptions I-IV

hold, and Theorems I and II are applied.
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